
Annals Of Agricultural Science, Moshtohor

Faculty of Agriculture, Moshlohor, Zagazig University (Banha - Branch)

VOL. 30 Number 3 Se	ept. 1992
اللغة العربية العربية العربية	F.=1
VETERINARY	1577 - 1602
SOIL SCIENCE	1565 - 1576
PLANT PROTECTION	1531 - 1564
HORTICULTURE	1349 - 1530
DAIRY AND FOOD TECHNOLOGY	1287 - 1348
CHEMISTRY	1249 - 1286
BOTANY	1219 - 1248
ANIMAL PRODUCTION	1207 - 1218
AGRONOMY	1171-1206

EFFECT OF CYCOCKL FOLIAR SPRAY ON VEGETATIVE GROWTH, CHEMICAL COMPOSITION, FLOWERING, YIELD AND QUALITY OF PEA PLANTS GROWN UNDER SALINITY STRESS

BY

Abo-Sedera, F.A. *; Eid, S.M.M. * and Abbas, H.H. **

- * Hort. Dept.,
- ** Soils and Agric. Chemistry Dept.,

Fac. of Agric. Moshtohor, Zagazig Univ. Banha Branch.

ABSTRACT

A pot experiment was carried out in the Experimental Farm of Fac. Agric at Moshtohor in two successive winter seasons of 1990/1991 and 1991/1992 to elucidate the effect of cycocel foliar spray at 0, 250 and 500 ppm on growth, chemical composition, yield and quality of pea plants grown under salinity stress of sodium in either chloride or sulphate form and at concentrations of 6000 and 9000 ppm.

Obtained results showed that salinity at the studied concentrations and in both forms of Na (chloride significantly depressed all studied growth sulphate) aspects, i.e., plant height, number of leaves and fresh dry weight of plant. Contrary to this effect, spraying plants with cycocal especially at low concentration significantly reduced the depressive effect of salinity on such growth parameters. In addition usage of saline water in irrigation has a decrement effect on photosynthesis pigments (chlorophyll a & b) and estimated macro-nutrients (N, P and K). However, it led to an increase in both Ca and Na content of plant foliage. In this regard, spraying pea plants with cycocel tended to reduce the decrement effect of salinity on such estimated chemical constituents and increased its content.

Obtained results show also that irrigating pea plants with saline water containing Na-salts either in chloride or sulphate form in its different used concentrations reduced the number of days elapsed to the anthesis of the first flower, lowered the position of the first flower node, decreased number of flowers and pods per plant, average pod weight and yield of pods per plant as well as number of seeds per pods. Moreover, it decreased the content of N, P and K and increased Na and Ca content of produced seeds. However, spraying pea plants with CCC especially the depressive effect of salinity on all aforementioned

flowering and yield parameters as well as chemical constituents of produced seeds.

INTRODUCTION

salinity in irrigation water of problem increasingly receiving much attention in Egypt as well countries. It is generally recognized that the presence of salt in irrigation water or growth media in concentration much more than those required for normal plant function determine the vegetative growth and the quantity as well as quality of pea plant production (Khadr et al., 1980; Abd El-Dayem, 1982; Abdalla, 1985 and Abed et al., 1986). Moreover, salinity hazards showed also a depressive effect on the vital chemical constituents of plant, i. photosynthetic pigments content, (Abdalla, 1985 and Abed et al., 1986) and macro-elements content N, P and K in both plant foliage and produced seeds (Malik et al., 1977; Khadr et al., 1980 and Abdalla, 1985). On the other hand, Na and Ca content of different plant parts was increased as a result of using saline water in irrigation (Abd El-Dayem, 1982 and Abdalla, 1985).

The need for overcoming the adverse effect of salinity pushed the investigators to test some growth regulators and other substances to ameliorate the adverse effect of salinity. In this respect, Ghazi (1976) and Moustafa et al., (1981) reported that CCC treatment counteract the adverse effect of salinity on broad bean growth and increased plant height, number of leaves and fresh weight as well as dry weight per plant. Such effect was higher at relatively low and moderate levels of salinity. In addition, Foda et al., (1973), Ghazi (1976), Seham et al., (1977) and Moustafa et al., (1981) indicated that, treatment broad bean plants grown under salinity stress with growth retardant (CCC) increased number of infloresence, fruits and total yield of pods per plant. Such increase was more pronounced at relatively moderate and high levels of salinity.

Therefore, this study was conducted to investigate the effect of CCC on growth, yield and durability of pea plants grown under salinity stress.

MATERIALS AND METHODS

A pot experiment was conducted at the Experimental Farm of the faculty of Agriculture at Moshtohor during the winter seasons of 1990/1991 and 1991/1992.

included 15 treatments which were the combination of five salinity treatments, i. e., 6000 and 9000 ppm for each of chloride (NaCl) and sodium sulphate (Na2SO4) in addition to the control treatment combined with three concentrations cycocel, i. e., 0. 250 and 500 ppm. Seeds of pea (Pisum sativum, L.) cv. Little Marvel were sown in 30 cm clay pots on October 25th and 15th in 1990 and 1991, respectively. Pots were treated with tar and their weight was adjusted with gravel and filled with 6 kg clay soil. The soil was loamy in texture with pH 7.7 and contains 1.5% organic matter, 0.103 available N, 2.74 ppm soluble-P, 0.5 meg/l. K, 9,7 meg/1. Na, 3.5 meg/1. Cl and 15 meg. SO4. Pots irrigated with tap water till complete germination. Thinning was done leaving only four uniform plants per pot. Pots were irrigated with saline solutions every three days with 700 ml to keep the water content at field capacity. Each treatment consisted of three pots and then three replicates were adopted. Plants were fertilized with each of N, P2Os and K2O at a rate of 2 gm/pot after 3 and 5 weeks from seeds sowing. Plants were sprayed three times with the different studied concentrations of cycocel at 2, 4 and 6 true leaf stages. Pots were arranged in split design where salinity treatment represent the main plots and the spray treatment arranged as sub-plots. Other agricultural treatments were done cultivation, pest control in the suitable time.

Data recorded :-

- A- Vegetative growth, at full blooming stage two plants from each treatment were randomly taken for measuring the vegetative growth parameters, i. e., plant height (cm), number of leaves per plant and fresh and dry weight/plant (gm).
- B- Flowering characters, were measured as date of flowering in day (calculated as number of days elapsed from sowing up to the anthesis of the first flower), number of the node on which the first flower appears and total number of flowers per plant.
- C- Yield and its components. At harvest, the mature green pods for each treatment were collected and the following data were recorded. Number of pods per plant, average weight of pod and pods yield per plant as well as number of seeds per pod.
- D- Chemical constituents, were assayed in plant foliage and green seeds as follows.

- 1- Photosynthetic pigments, i. e., chlorophyll (a), (b) and carotenoids were assayed in plant foliage according to the method described in A.O.A.C. (1970).
- 2- Mineral elements, N, P, K, Na and Ca were determined either in plant foliage or green seeds according to the methods used by Pregl (1945), Murphy and Riely (1962), Brown and Lilleland (1946) and Richards (1954) respectively.

All obtained data were subjected to statistical analysis according to Gomez and Gomez (1983).

RESULTS AND DISCUSSION

1- Vegetative growth:

Data illustrated in Table (1) show clearly that both sources and levels of water salinity exerted a depressive effect on the different studied growth parameters, i. e., plant height, number of leaves per plant as well as and dry weight per plant. In this respect, the highest concentration of Na-salts (9000 ppm) reflected the highest depressive effect on all the forementioned growth aspects compared to the other concentration (6000 ppm) and the control. In addition, sulphate form proved to be of less determintal effect compared with chloride. Such depressive of salinity on plant growth may be attributed to the accumulation of salts in growth media that may unsuitable conditions for water and mineral uptake by plant which may exert some disturbances in metabolic aspects leading to such plant growth inhibition. Obtained results agree with those reported by Khadr et al. (1980), Abd El-Dayem (1982), Abdalla (1985) and Abed et al. (1986).

Concerning the effect of cycocel treatments the same data in Table (1) reveal that irrespect of plant height which was decreased, number of leaves, fresh and dry weight per plant were increased as a result of cycocel application during both seasons of growth. In this regard, the highest increments were obtained in case of sprying pea plants with the low concentration (250 ppm) of cycocel compared with the control and the higher used concentration (500 ppm). Obtained results may be due to cycocel at low concentration may be a source of N which considered the major element in the formation of protoplasm. Such results are agree with those obtained by Rafique-Uddin (1984) on bean and Khalil (1990) on cowpea, they reported that most concentrations of tested substance (CCC) showed promotive effect on number of

under pry veight 8 pea plants grown Fresh Weight (8) 11.9 6.8 7.7 4.7 4.9 6.1 4.2 6.2 7.9 6.9 6.0 9.0 8.0 7,28,36,2 11,3 6,4 5,1 7.2 7,2 8,3 6,6 1991/1992 No. of leaves/ plant 13,3 14,6 13,6 9.5 11.0 10.3 11,6 1.0 10,8 12,2 11,5 10.6 11.6 11.0 111,3 12,0 11,6 9.7 12.0 11.3 13.8 11.0 10.2 0,7 of Plant height (cm) 29,3 23,0 21,6 21,3 22,3 18,3 21.1 19.3 16.6 24.0 24.0 22.0 21.5 22.0 21.0 24.6 20.6 19.0 23.3 23.4 22.1 19.9 1,7 morphological charateristics Dry weight (g) 1,2 2,1 1,8 0.2 2.0 2.1 1.6 0 0 0 2,1 2.1 8.4. Fresh Weisht 5.7 6.7 8.7 5.8 8.8 11.6 11.9 10.7 6.5 5.9 6.0 1:1 1990/1991 height round, of height leaves/ (cm) 12.6 14.6 14.3 11,0 10,3 10,3 12,3 12,3 10.0 X.S 13,8 11,1 11,1 11.6 2.0 10,7 12,4 11,7 ti O Table (1); Effect of cycocel 24.6 25,3 21.0 21.0 20.3 16.0 24.6 25.6 22.0 20.0 22.6 21.3 25,2 23,6 19,1 24.0 21.5 1.5 24.3 24.4 21.4 salinity stress. Cycacal Controlrum J 250 500 250 500 md d 250 250 250 250 L.S.D. at 0.05 L.S.D. at 0.05 h.S.D. at 0,05 Salinity Con. ************ 0009 0006 0006 0009 0006 00006 Season NA 2 SO4 6000 123 C (1) Control MaCl 6 COAR. Nacı

both leaves and lateral branches as well as dry matter content of plant.

Regarding the interactive effect, it is obvious from the same data in the Table (1) that spraying pea plants grown under salinity stress with cycocel especially at low concentration (250 ppm) counteracts the depressive effect of salinity on all studied growth parameters. In this respect, the highest concentration of CCC (500 ppm) intensified the depressive effect of salinity in most studied growth aspects. Ghazi (1976) and Moustafa et al. (1981) on broad bean obtained similar results.

2- Chemical composition of plant foliage:

A- Photosynthetic pigments:

It is evident from data presented in Table (2) that, chlorophyll (a) and (b) were significantly decreased as a result of irrigating pea plants with the saline water. highest depressive effect was achieved at the highest salinity concentration (9000 ppm) for Na-salts in its both sulphate). Such decrease in (chloride and forms photosynthetic pigments may be attributed to the effect of salinity on macro-elements uptake which are essential for chlorophyll molecule formation. These results are similar to those obtained by Abdalla (1985) and Abed et al. (1986) on pea.

As for the effect of cycocel, data indicate also that plants content of chlorophyll (a) and (b) statistically increased as a result of spraying plants with cycocel compared to the control treatment. In this regard, the highest concentration of CCC (500 ppm) caused the highest content of photosynthetic pigments. Similar results were reported by El-Tahawi et al.(1982) on bean.

Regarding effect of the interaction between CCC and salinity, it is obvious that, treating pea plants with CCC ameliorate the reducing effect of salinity on such photosynthetic pigments.

B- Minerals content:

It is clear from the same data at Table (2) that total nitrogen, phosphorus and potassium content of plant foliage significantly decreased while sodium and calcium increased as a result of irrigation with saline water. In this concern, the highest salinity level (9000 ppm) resulted in the highest depressive effect. Moreover, sodium salt in the

Table (2): Effect of CCC foltar spray on photosynthetic pigments (mg/100 g F.W.) and minerals concentration (mg/100 g D.W.) in pea plant foliage grown under salinity stress,

Season				/0661	1661/066					.	1991/1992	1992		
Salinity cone, ppm	Cycocel conc. ppm	Chloro- ph x 1 1 (a) x (b)	*	e.	*	Ca		$\begin{array}{c} \text{Chloro-} \\ \text{phx} \\ \text{a} \end{array}$	11 (b)	Z	Δ,	 m4 	Ca	N A
0	0 250 500	130 78 148 91 148 88		202	3085 2966 3033	1519 1661 1576	242 253 255	125 136 143	92 86	3389 3569 3420	200 213 193	3041 2866 2966	1610 1268 1617	234 271 237
NaC1 6000	250 500	143 71 127 78 143 83	3195 3330 3299	180 185 185	2783 2766 2760	1273 1700 1722	363 304 303	119 127 130	76 78 84	3249 3420 3269	185 188 191	2700 2816 2733	1683 1565 1683	256 292 306
0006	250 500	124 61 133 65 114 70		162 181 178	2680 2700 2733	1771 1601 1653	396 333 320	109 120 105	51 74 71	3060 3299 3119	180 181 185	2640 2666 2666	1680 1639 1705	366 309 317
Na ₂ SO ₄ 6000	250 500	123 67 152 87 162 75		187 195 185	2850 2773 2770	1496 1744 1744	319 278 324	117 140 140	71 65 70	3339 3510 3389	190 191 196	2720 2733 2700	1683 1672 1804	297 279 299
0006	220 200 200	120 63 133 71 148 83		170 180 168	2680 2715 2763	1617 1774 1749	329 341 315	111 119 132	52 62 55	3150 3420 3209	175 178 188	2660 2670 2600	1694 1672 1892	323 288 302
L,S,D, at 0,05		3	14	*	9	91	16	4	2	31	128	89	101	4
Control 0 NaC1 6000 9000 Na ₂ SO ₄ 6000		142 85 134 77 124 65 146 76 134 72	3526 3252 3093 3485 3407	197 183 173 189 172	3028 2753 2764 2797 2797 2719	1585 1565 1675 1661 1713	250 323 349 307 328	135 125 111 132 120	88 79 65 68 56	3459 3312 3159 3412 3259	202 191 182 192 192	2957 2749 2657 2717 3310	1498 1643 1674 1719 1752	247 285 330 291 304
L.S.D. at 0.05	• • • • • • • • • • • • • • • • • • •	3 1	16	3	25	25	16	3	-	13	Z.S	33	70	<u> </u>
Cycocel	250 500	126 68 138 78 143 79	3287 3484 3286	179 188 181	2806 2784 2811	1535 1696 1688	325 301 303	116 128 130	66 74 74	3237 3443 3281	186 190 190	2752 2750 2750 2713	1670 1563 1740	295 287 292
L.S.D. at 0.05		4 2	9	2	30	40	7		2	41	N.S	33	70	2
				1 11									ĺ	

chloride form was more effective than sodium salt in the sulphate form.

These obtained results are confirmed with those reported by Malik et al. (1977), Khadr et al. (1980), Abdalla (1985) and Abed et al. (1986) on pea.

Concerning the effect of cycocel it is clear that all the studied macro-elements, except Na, were increased as a result of spraying the plants with cycocel. Such results are connected with the increasing in vegetative growth aspects and consequently the uptake of such macro-nutrients was increased. Khalil (1990) on cowpea reported similar results. Regarding the interaction effect, the same data show that spraying pea plant with different studied concentration of CCC reduced the decreasing effect of salinity on the uptake of macro-nutrients, i.e., N,P,K and Ca. In the same time, it decreased the uptake of Na especially at the low level (250 ppm).

4- Flowering characteristics:

Data presented at Table (3) reveal that all salinity treatment significantly decreased the studied flowering aspect, i.e., number of days elapsed to the anthesis of the first flower, lowered the position of the first flower the stem and decreased the number of flowers per plant. this respect, the highest used level of salinity (9000 ppm of NaCl or Na2 SO4) showed the highest depressive effect on all forementioned flowering criteria during both seasons of growth. Such results may be due to the effect of salinity on the uptake of macro-elements (Table, 2) shortening of vegetative phase leading to force the plant to come early to flowering phase before completing its vegetative growth. Obtained results are in confirmity with those reported by Uprety and Sarin (1975) and Abd El-Dayem (1982), on pea who reported that salinity treatments had a depressive effect on various flowering aspects.

Regarding the effect of CCC, the same data in Table (3) indicated that CCC treatments tented to increase all the studied flowering aspects. Such increments reached the level of significancy only in case of number of flowers produced per plant during the growing seasons. In this respect, the lower concentration (250 ppm) proved to be the most effective treatment compared with the highest one and the control treatment.

Table (3); Rffact of CCC foliar apray on flowering characteristics of pea plants grown under salinity stress.

Sepeon	, i		1661/0661	1	1	1991/1992	
Salinity conc, pps	Cycoce 1 Conc. Ppm	Flowering time (day)	No. of first flower node	No, of flowers/ plant	Flowering time (day)	No, of first flower node	No, of flowers/ plant
0	2.50 500	46.0 45.0 45.0	11.0 10.5 10,0	13,0 13,0 12,9	46.9 46.0 43.0	10.8 10.5 10.5	13.0 13.0 12.0
NaC1 6000	250 250 500 250 250 500	44.0 44.7 443.0 43.0	7.8 8.8 8.0 6.0 7.0 6.0	7.3 8.9 8.0 6.0 6.1	444 444 600 600 600 600 600	787.5	7.0 8.0 8.0 7.0 5.1
Na ₂ SO ₄ 6000	250 250 500 250 500	444 4413 0.04 1.00 1.00 1.00	9.8 9.8 7.7 2.5 0.5	8 7 7 9 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	8 5 7 7 8 7 7 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	8.0 8.0 8.0 7.0
L.S.D. at 0.05		N.S	8	6.0	1,2	N.S	1,7
Control 0 NaCL 6000 Na ₂ SO ₄ 6000		445.3 444.5 42.9 41.1	10.5 8.2 6.5 7.8	12.9 8.0 8.0 6.0	444 444 442 402 60 60 60	10.6 7.7 6.8 8.0 7.8	12.6 8.3 5.7 9.3 7.3
L.S.D. at 0.05 Cycocal	250 250 500	4 4 3 . 1 4 4 3 . 6 4 4 . 6 4 . 6 4 4 . 6 4	8.0 8.3 7.7	2,1 8,2 8,4 7,5	1,7 43,1 43,8 43,0	0 68 8 8 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1,7 8,2 9,7 8,0
L,S,D, at 0,05		N.S.	N, S	4.0	0,5	N,S	0,7

Table (4); Effect of CCC foliar apray on pod yield and its components of pea plants grown under salinity streas,

Season	u.			1990	1990/1991			1991/1992	1992	
Salinity conc.		Cycocel Conc. ppm	No. of spods/t	Pod weight (g)	Yield/ plant (g)	No, of seeds/ pod	No. of pods/ plant	Pod weight (g)	Yield/ plant (g)	No. of seeds/ pod
0		250 500	444	3,8	16.4 18.0 19.3	4.4.4.0	5.0	3.5 4.5	17.6 25.6 19.7	5.0 5.3 8.4
NaC1 6	0006	250 500 0	2 m m m m m m m m m m m m m m m m m m m	3 3 3 4 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.7 13.0 9.9 3.9	444 4	6.6 4.5 7.7	2,3 3,9 1,6	15,1 17.5 16,4 4.2	3,3
Na ₂ SO ₄ 6	0009	250 500 500 500	ഗേഗ ഗോല പ്— ജയർ	84 87 9	6.4 14.1 14.1	ოც 444 ო ა 040	44 44 64 64 64 64 64 64 64 64 64 64 64 6	4.4.4.6.4.6.4.4.6.8.	5.0 12.2 16.7 13.6	88 844 80 72
	0006	250 500	2.2	2.3	5.1 9.2 6.8	3.1	3.0	1,8 3,5	8 4 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3.0
L.S.D. At	At 0,05	P	0,1	N, S	1,3	N.S	N, S	x . S	N.S	0,5
F	0009		400 00 00 47	2 3 5 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17.9 10.2 5.1 12.3 7.0	ক্ৰম কুল মুক্ত কুল	ଧାର୍ଜ ଅନ୍ତ ⊶ଇର କ୍ର	400 40 -00 00	20.9 16.3 5.3 14.1 6.8	2, 2, 9
I,S,D, at Cycocel	0,05	250	2,7	2,9 5,6	0,6 8,4 11,6	3,6	3.8	2.7	10.9	3.5
L, 3, D, at	0.05		0,1	0,1	9,0	N,S	0.3	0.2	0.8	0,2

presented in Table (5) show the seeds content some macro-nutrients. It is obvious that usage of the saline water for irrigation resulted in decreasing seed content and K as compared with their content of the same elements upon utilization of the tap water. The decrease was pronounced by increasing concentration of salts in the irrigation water from 6000 up to 9000 ppm weather salt was in the chloride form or the sulphate one. Moreover, could noticed that the chloride be form was effective in decreasing the seed content of the investigated elements (N, P and K). Such an effect of salinity on content of N, P and K is comparable to that of salinity on the vegetative parts content of the same elements (Table, 2) the results obtained here are similar to a large extent to those obtained by Khadr et al; (1980) and Abdalla (1985) Such reduction of N, P and K uptake could be pea. attributed to the disturbances in ion absorption due to toxicity of one or more specific (Na and/or C1) ion present in high concentration, (Strganov, 1964). Also, interaction between N and P in soils may be lead to coprecipitation of ammonium and phosphate (Lehr et al., 1967). However, difficult to generalize on the effects of these interactions on plant nutrition because the compounds vary from to very slowly available as sources of N and P to available plants, (Lehr et al., 1967). On the other hand, availability both and K may be reduced due to potassium coprecipitation with P, precipitation of in precipitation is more pronounced in soils exchangeable K or with easily decomposed K-bearing minerals. Thus, such interactions result in a decrease in soil content of available K and P and consequently their uptake On the other hand, data show that increasing the irrigation water concentration of the salts was associated in the seeds content of both Na and Ca. The increase increase in seeds content of Na is expected since Na is radical in the irrigation water which means a only basic consequently increase in the soil content of this element and its uptake by the plants.

Regarding the effect of CCC on the seeds content of the forementioned elements, data in Table (5) reveal that spraying pea plants with CCC increased markedly the seeds content of N, P, K and Na but on the other hand decreased the seeds content of Ca, especially at the low concentration of CCC (250 ppm).

Table (5): Effect of CCC foltar apray on minerals concentration (mg/leeg D/WJ) in green seeds of pea plants grown under salinity stress,

Season			-	1661/0661	91			-	1991/1992	92	
Salinity conc.	Cycocel Conc, pps		! ! !	 	C	85 25	Z	6 .	>4	8	X B
0	250 500	3573 3629 3600	233 258 245	2390 2406 2493	1705 1639 1661	34 53 88	3735 3809 3629	235 250 249.	2400 2416 2413	1529 1612 1832	37 51 50
NaC1 6000		3330 3285 3285 3269	220 246 208 200 230	2260 2346 2493 2170 2216	2035 1755 1766 2167 1939	9 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3393 3389 3240 3330	210 231 212 200 227	2270 2316 2336 2200 2210	1595 1620 1763 2002 2057	95 91 92 95
Na ₂ SO ₄ 6000		3393 3420 3359 3288 3299	230 256 240 215 250 230	2280 2406 2496 2173 2253 2310	1925 1700 1843 2090 1914 2222	97 108 82 104 118	3420 3569 3420 3285 3330 3269	221 244 246 210 242 237	2290 2336 2342 2220 2273 2285	1606 1568 1873 2145 2162 2203	82 110 93 91 112 104
, At	0.05	11	N, S	21	21	6	15	X .S	24	19	4
Control 0 NaCl 6000 Na ₂ SO ₄ 6000		3600 3330 3227 3390 3295	248 210 242 242 231	2429 2366 2232 2334 2394	1668 1852 2028 1822 2074	45 89 106 96 101	3724 3430 3270 3469 3294	244 217 209 237 239	2409 2307 2223 2322 2322	1657 1659 2037 1682 2170	46 90 96 95 102
. at	0.05	7	8	18	17	7	12	10	19	12	6
Cycocel	250	3358 3350 3350	219 248 225	2254 2325 2420	1984 1789 1894	84 90 88	3215 3509 3389	215 239 228	1880 2310 2327	1775 1803 1944	80 91 86
L.S.D. at 0,	0,05	ĸ	. е	10	æ	2	7	3	=	6	7
The state of the s	The same of the sa										

As for the effect of the interaction, it is obvious from the same data that, cycocel treatments tented to ameliorate the effect of salinity treatments on the uptake and translocation of such determined mineral elements.

Generally, it could be concluded that under such condition cycocel at 250 ppm was recommended for reducing and ameliorating the depressive effect of salinity on growth, yield and quality of pea plants.

REFERENCES

- Abdalla, A.A. (1985): Effect of salinity and moisture stress on pea plants. M.Sc. Thesis, Fac. Agric., Ain Shams Univ. 95 pp.
- Abd El-Dayem, H.M. (1982): Physiological studies on the relationship of water requirement to salt tolerance in some plants. M.Sc. Thesis, Fac. Agric., Moshtohor, Zagazig Univ. 140 pp.
- Abed, T.A.; Zaki, M. El-Said and Abo-Sedera, F.A. (1987): Effect of some micro-nutrients foliar spray and salinity stress on peas (<u>Pisum sativum</u>, L.). Annals of Agric. Sci Moshtohor, 25 (2):1041-1056.
- A.O.A.C. (1970): Official methods of analysis the Association of Official Agricultural Chemists, 11th ed. Washington, D.C.
- Brown, J.D. and Lilleland (1946): Rapid determination of potassium and Sodium in plant material and soil extracts by flame photometry. Proc. Amer. Soc. Hort. Sci., 48:341-346.
- El-Tahawi, B.S.; Diab, M.A.; El-Hadidi, Z.A.; Habib, M.A. and Draz, S.W. (1982): Effect of gibberellic acid and cycocel on carbohydrate metabolism in Phaseolus vulgaris. Minufiya J. of Agric. Res., (6):289-301.
- Foda, H. A.; Younis, M.E. and Moustafa. S.M. (1973): Plant growth and metabolism as influenced by growth retardants. 7th Arab Sci. Cong. in Press.

- Ghazi, S.M. (1976): Physiological studies of Cycocel and Alar in relation to salt tolerance of (Vicia faba) plants. Ph. D. Thesis, Dept. Botany, Fac. Sci., Ain Shams Univ.
- Gomez, K.A. and Gomez, A.A. (1983): Statistical procedures for Agric. Res. 2nd Ed. 686 pp.
- Khadr, A.A.; Nowaigy, N. and Hussein, M.H. (1980): Differential tolerance of wheat, barley, broad bean and pea seedlings to various level of salinity, Bull. N.R.C. Egypt. 5:283-289.
- Khalil, M.A.I. (1990): Response of cow pea plants to foliar spray with some growth regulators. Annals of Agric. Sci., Moshtohor, 28(2): 1315-1334.
- Lehr, J.R.; Brown, E.H.; Frazier, A.W.; Smith, J.P. and Thrasher, R.D. (1967): Crystallographic properties of fertilizer compounds. Tnn. Valley Authority Chem. Eng. Bull. no. 6, TVA. Muscle Sheal, Ala.
- Malik, Y.S.; Pandita, M.L. and Jaiswag, R.C. (1977): Effect
 of salinity on germination, growth, yield and quality in
 pea (Pisum sativum, L.). Haryana J. of Hort. 6:181-185.
 (C.F. Hort. Abstr. 48: 8204, 1978).
- Moustafa, S.M.; El-Ghandour, M.A. and Ghazi, S.M. (1981): Effect of seed treatment with CCC and Alar on growth and development of <u>Vicia faba</u> plant grown at different level of soil salinity. Res. Bull. No. 1625 Fac. Agric., Ain Shams Univ.
- Murphy, J. and Riely, J.P. (1962): A modified single solution method for the determination on phosphate in natural water. Anal. Chem. Acta, 27:31-36.
- PregI, E. (1945): Qualitative organic micro-analysis 4th Ed.
 J. Chundrill, London.
- Refighe-Uddin, M. (1984): Effect of CCC on yield and yield contributing characters of <u>Phaseolus vulgaris</u> (Kidney bean). Legume Res., 7:43-47. (C.F. Hort. Abstr., 9:1127).
- Richards, L.A. (1954): Diagnosis and improvement of saline and alkaline soils. Agric. Handbook 60:67-85.

- Saleh, H.H. and Shahin, A.H. (1980): Effect of some growth regulators on growth and yield of peas. Agric. Res. Rev. 3:127-134 A.R.E.
- Seham, M. A.; Moustafa; El-Gandour, M.A. and Ghazi, S.M. (1977): Effect of cycocel and Alar on growth and yield of Vicia faba Plants grown in saline soil. 1st Conf. of Saudi Biol. Soc. (SBC) Riyadh.
- Strogonov, B.P. (1964): Conference on physiology of plant resistance. Izd. Akad. Nouk. SSSK. Ser Biol., 4:623.
- Tesu, C.; Merlesw, E.; Avarvarei, I. and Vacaru, M.O. (1979): Salt tolerance of some pea cultivars, Iacrari, 23:61-62. (C.F. Field Abstr. 35:522).
- Uperty, D.C. and Sarin, H.N. (1975): Physiological studies
 on salt tolerance in pea. I. growth and maturation Acta,
 Academ. Sci. 24:452-457. (C.F. Hort. Abstr. 45:7676,
 1976).

تأثير الرش بالسيكوسيل على النمو الخشرى والتركيب الكيماوي والإزهار والمحصول وجودته لنباتات البسلة النامية تحت تأثير الملوحية

- * فتحى أبوالنصر أبوسديـر ة * سعيد معوض محمد عيد * * حسـن حمزة عباس
 - * قسم البساتين _كلية زراعة مشتهر _جامعة الزقازيق _ فرع بنه____
 - ** قسم الأراضي والكيميا، الزراعية كلية زراعة مشتهـ جامعة الرقازيق فرع بنها

اجريت تجربة أصص بمزرعة التجارب بكلية زراعة مشتهر خلال الموسم الشتوى لعامى،١٩٩١/٩ ، ١٩٩١/٩ الموسم الشتوى لعامى،١٩٩١/٩ ، ١٩٩٢/٩١ لدراسة تأثير الرش بالسيكوسيل بتركيزات صفر ، ، ،٥٥ ، ،٥٠ جزء في المليون على النمسو والتركيب الكيماوى والمحصول والجودة لنباتات البسلة النامية تحت تأثير الملوحة حيث كانسست على صورة كلوريد أو كبريتات الصوديوم عند تركيزات ،،،، ، ،،، ،، جزء في المليون لكل منهما.

وقد أظهرت النتائج المتحصل عليها ان الملوحة عند التركيزات المدروسة وعلى مسسورة كلوريد أو كبريتات قللت معنويا كل مظاهر النمو معبرا عنه بارتفاع النبات وعدد الاوراق والسوزن الغض والجاف للنبات. وعلى عكس هذا التاثير فان رش النباتات بالسيكوسيل خاضه عند التركيز المنخفض قد قلل معنويا من التأثير السيى، للملوحة على القياسات الخضرية . وبالآمافة السسى خلك فان استخدام الما، المالح في الرى أدى الى نقص في صبغات التمثيل الايضى (كلوروفيل أ ، ب) وكذلك العناصر الكبرى (ن ، فو ، بو) الا أن كل من الكالسيوم والصوديوم قد زاد في النبات. وفسسي هذا الخصوص فان رش نباتات البسلة بمادة السيكوسيل قد قلل التأثير السي، للملوحة على المكونات الكيماوية وزيادة محتواها بالنبات.

كما قللت الملوحة أيضا عدد الإيام اللازمة لتفتح أول زهرة وخفض موقع أول عقدة زهرية كميا قللت عدد الازهار والقرون للنبات ومتوسط وزن القرن ومحصول القرون للنبات وأيضا عدد البيذور بالقرن و علاوة على ذلك فان الملوحة قد قللت محتوى البذور الخضراء من ن ، فو ، بو ، وزادت من الموديوم والكالسيوم . الا أن رش نباتات البسلة بمادة السيكوسيل خاصه التركيز . ٢٥ جزء في المليون قد أدى الى تقليل التأثير الضار للملوحة على الصفات الزهرية والمحصولية وايضا المكونيات الكيماوية للبذور.